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ABSTRACT:

Three simple procedures were developed to determine strain energy release rates, G, in

composite skin/stringer specimens for various combinations of uniaxial and biaxial

(in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design

studies in such a way that only a few finite element computations will be necessary for a study of

many load combinations. The results were compared with mixed mode strain energy release rates

calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the

virtual crack closure technique. The first procedure involved solving three unknown parameters

needed to determine the energy release rates. Good agreement was obtained when the external loads

were used in the expression derived. This superposition technique, however, was only applicable if

the structure exhibits a linear load/deflection behavior. Consequently, a second modified technique

was derived which was applicable in the case of nonlinear load/deformation behavior. The

technique, however, involved calculating six unknown parameters from a set of six simultaneous

linear equations with data from six nonlinear analyses to determine the energy release rates. This

procedure was not time efficient, and hence, less appealing.

Finally, a third procedure was developed to calculate mixed mode energy release rates as a

function of delamination lengths. This procedure required only one nonlinear finite element

analysis of the specimen with a single delamination length to obtain a reference solution for the

energy release rates and the scale factors. The delamination was subsequently extended in three

separate linear models of the local area in the vicinity of the delamination subjected to unit loads to

obtain the distribution of G with delamination lengths. This set of sub-problems was solved using

linear finite element analyses, which resulted in a considerable reduction in CPU time compared to a

series of nonlinear analyses. Although additional modeling effort is required to create the local sub-

model, this superposition technique is very efficient for large parametric studies, which may occur

during preliminary design where multiple load combinations must be considered.

KEY WORDS: composite materials, delamination, fracture mechanics, energy release rate, finite

element analysis, virtual crack closure technique, skin/flange interface



INTRODUCTION

Carbon epoxy composite structures are widely used by today's aircraft manufacturers to

reduce weight. Many composite components in aerospace structures consist of flat or curved panels

with co-cured or adhesively bonded frames and stiffeners. Testing of stiffened panels designed for

pressurized aircraft fuselage has shown that bond failure at the tip of the frame flange is an

important and very likely failure mode [1]. Comparatively simple simulation specimens consisting

of a stringer bonded onto a skin were developed and it was shown in experiments that the failure

initiated at the tip of the flange, identical to the failure observed in the full-size panels and frame

pull-off specimens [2-7].

The overall objective of the current work is to develop a simple procedure to calculate the

strain energy release rate for delaminations originating from matrix cracks in these skin/stringer

simulation coupons for arbitrary load combinations. The total strain energy release rate would then

be compared to critical values obtained from an existing mixed-mode failure criterion to predict

delamination onset. This procedure could then be used for parametric design studies in such a way

that only a few finite element computations would be necessary to evaluate bonded joint response

due to many load combinations. A similar approach based on an approximate superposition

analysis technique is described in reference [8]. Since energy is a quadratic function of the applied

loads, simple superposition to add the energy release rates from separate load cases is not valid.

Therefore, a simple quadratic expression is developed to calculate the strain energy release rate for

any combination of loads [4]. To validate this approach, results obtained from the quadratic

expression are compared to mode I and mode II strain energy release rate components, which are

calculated from nonlinear two-dimensional plane-strain finite element analyses using the virtual

crack closure technique [9, 10].

Three simple procedures are developed to determine strain energy release rates, G, in

composite skin/stringer specimens for various combinations of uniaxial and biaxial

(in-plane/out-of-plane) loading conditions. The first procedure involved solving three unknown

parameters needed to determine the energy release rates. This superposition technique, however,

was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a

second modified technique is derived which is applicable in the case of nonlinear load/deformation

behavior. A third procedure is developed to calculate mixed mode energy release rate as a function

of delamination length. This procedure requires only one nonlinear finite element analysis of the

specimen with a single delamination length to obtain a reference solution for the energy release

rates and the scale factors.



BACKGROUND

Previous investigations of the failure of secondary bonded structures focused on loading

conditions as typically experienced by aircraft crown fuselage panels. Tests were conducted with

specimens cut from a full-size panel to verify the integrity of the bondline between the skin and the

flange or frame [1]. However, these panels were rather expensive to produce and there is a need for

a test configuration that would allow detailed observations of the failure mechanism at the

skin/flange interface. A simpler specimen configuration was proposed in reference [2]. The

investigations focused on the failure mechanisms of a bonded skin/flange coupon configuration

loaded in bending [2-5]. In many cases, however, composite structures may experience both

bending and membrane loads during in-flight service. Damage mechanisms in composite bonded

skin/stringer structures under monotonic tension, three-point bending, and combined

tension/bending loading conditions were investigated in references [6, 7]. An analytical

methodology was also developed to predict the location and orientation of the first transverse matrix

crack based on the principal transverse tension stress distribution in the off axis plies nearest the

bondline in the vicinity of flange tip. The prediction of delamination onset was based on energy

release rate calculations.

The specimens tested in references [6, 7] consisted of a bonded skin and flange assembly as

shown in Figure 1. Both the skin and the flange laminates had a multidirectional lay-up made from

IM6/3501-6 graphite/epoxy prepreg tape with a nominal ply thickness of h =0.188 mm. The skin

lay-up, consisting of 14 plies, was [0/45/90/-45/45/-45/0]s and the flange lay-up, consisting of 10

plies, was [45/90/-45/0/90]s. The measured bondline thickness averaged 0.102 mm. Specimens

were 25.4-mm wide and 203.2-mm long. Typical material properties for the composite tape and the

adhesive material used in the analysis were taken from reference [2] and are summarized in Table 1.

The specimens were subjected to pure tension, three-point bending, and combined axial

tension and bending loads. A schematic of the deformed specimen geometries, the boundary

conditions, and the loads corresponding to the first damage observed are shown in Figure 2. In the

combined axial tension and bending load case, a constant axial load, P, was applied in a first load

step while transverse loads remained zero. In a second load step, the axial load was kept constant

while the load orientation rotated with the specimen as it deformed under the transverse load. The

tests were terminated when the flange debonded unstably from one of the flange tips. Damage was

documented from photographs of the polished specimen edges at each of the four flange corners

identified in Figure 3(a). Typical damage patterns, which were similar for all three loading

configurations, are shown in Figure 3(b) and (c). Corners 1 and 4 and corners 2 and 3 had identical

damage patterns. At corners 1 and 4, a delamination running in the 90°/45° flange ply interface

(delamination A) initiated from a matrix crack in the 90° flange ply as shown in Figure 3(b). At



longer delamination lengths, new matrix cracks formed and branched into both the 45° ply below

the delaminated interface as well as the 90° flange ply above the interface. At corners 2 and 3 a

matrix crack formed at the flange tip in the 90° flange ply that subsequently ran through the lower

45° flange ply and the bondline into the skin as shown in Figure 3(c). Subsequently, a split

(delamination B1) formed from the tip of that matrix crack within the top 0° skin ply and in some

cases, a second delamination (delamination B2) was observed below the first in the top 0°/45° skin

ply interface.

In previous investigations, stress analyses were used to predict the location and orientation of

the first transverse matrix crack based on the principal transverse tension stress distribution in the

off axis plies nearest the bondline in the vicinity of the flange tip [6,7]. A comparison of the

trajectories of the maximum principle tension stress with the damage patterns shown in Figures

3(b) and (c) indicated that the matrix crack starts to grow perpendicular to the trajectories. For all

three loading conditions, maximum principal tensile stresses in the 90° ply closest to the bondline,

computed for applied loads at damage onset, were almost identical and exceeded the transverse

tension strength of the material. Subsequent finite element analyses of delamination growth from

these matrix cracks were performed using the virtual crack closure technique. However, because the

specimen geometry and loadings required nonlinear analyses, this was a computationally intensive

process.

ANALYSIS FORMULATION

Finite Element Model

In the current investigation the finite element (FE) method was used to analyze the test

specimens for each loading case. The goal of this analysis is to evaluate strain energy release rate

components at the delamination tip using the virtual crack closure technique [9,10]. To develop a

simple procedure to calculate the strain energy release for delaminations originating from matrix

cracks, it was reasonable to focus only on one damage pattern during the investigation. Therefore,

only a FE model of a specimen with a delamination running in the 90°/45° flange ply interface,

corresponding to Figure 3b, was developed and loads and boundary conditions were applied to

simulate the three load cases. The two-dimensional cross section of the specimens was modeled

using quadratic eight-noded quadrilateral plane strain elements (see Figure 4) and a reduced (2x2)

integration scheme was used for these elements. For the entire investigation, the ABAQUS finite

element software was used [11].

An outline and two detailed views of the FE model are shown in Figure 4. A refined mesh

was used in the critical area of the 90° flange ply where matrix cracks and delaminations were



observed in the test specimens. Outside the refined mesh area, all plies were modeled with one

element through the ply thickness. Two elements were used per ply thickness in the refined region,

except for the first three individual flange plies above the bondline and the skin ply below the

bondline, which were modeled with four elements. Three elements through-the-thickness were used

for the adhesive film. Based upon the experimental observations shown in Figure 3b, the model

included a discrete matrix crack and a delamination. The initial matrix crack was modeled

perpendicular to the flange taper, as suggested by the microscopic investigation as well as the stress

analysis, which showed that the matrix crack starts to grow perpendicular to the trajectory of the

maximum principle tension stress [6,7]. Damage was modeled at one flange tip as shown in

Figure 4. The mesh used to model the undamaged specimen, as discussed in reference [6, 7], was

employed at the opposite taper. The model consisted of 6977 elements and 21486 nodes and had

42931 degrees of freedom.

For the combined tension and bending load case, performed in NASA Langley's axial tension

and bending test frame [12,13], the top grip, the load cell, and the load pin were modeled using

three-noded quadratic beam elements as shown in Figures 2c and 5, to accurately simulate the

combined tension and bending loads applied [6,7]. The beams were connected to the

two-dimensional plane strain model of the specimen using multi-point constraints to enforce

appropriate translations and rotations. As shown in Figure 5, nodes 1-29 along the edge of the

plane strain model (x =101.6 mm) were constrained to move as a plane with the same rotation as

beam node A. To be consistent with the actual tests, a constant axial load, P, was applied in a first

load step while transverse loads remained zero. In a second load step, the axial load was kept

constant while the load orientation rotated with the specimen as it deformed under the transverse

load. During the tests, the maximum specimen deflections under the transverse load were recorded

at the top grip contact point. In the FE simulation a prescribed displacement, v, was applied which

corresponded to the recorded transverse stroke. For the beam model of the steel parts (top grip, load

cell, and load pin), a Young's Modulus of 210 GPa and a Poisson's Ratio of 0.3 were used as

material input data. A rectangular beam cross section was selected to model the square cross section

of the top grip I = 1.87 ×106  mm 4( )  and load pin I = 1.4 × 106  mm4( ) and a circular beam cross

section was used to model the cylindrical load cell I = 8.37 ×103  mm4( ) .

When applying two dimensional plane strain FE models it is assumed that the geometry,

boundary conditions and other properties are constant across the entire width of the specimen. The

current model, thus, may not always capture the true nature of the problem. As shown in Figure 3,

the delamination pattern changed from corner 3 to corner 4 from a delamination running in the

90°/45° interface to a delamination propagating between the adhesive film and the top 0° ply of the



skin. This is a three dimensional effect and can not be accounted for in the current plane strain

model.

Virtual Crack Closure Technique

The Virtual Crack Closure Technique (VCCT) described in references [8, 9] was used to

calculate strain energy release rates for the delaminations. The mode I and mode II components of

the strain energy release rate, GI and GII, were calculated as (see Figure 6)

    
GI = −

1

2∆a
Y' i v'm −v'

m*( ) +Y' j v' l −v'
l*( ) 

 
 
 (1)

and

    
GII =−

1

2∆a
X' i u'm −u'

m*( ) + X' j u' l −u'
l*( ) 

 
 
 (2)

where a is the length of the elements at the delamination tip, Xi' and Yi' are the forces at the

delamination tip at node i, and um' and vm' are the relative displacements at the corresponding node m

behind the delamination tip as shown in Figure 6. Similar definitions are applicable for the forces at

node j and displacements at node l. For geometrically nonlinear analysis, both forces and

displacements were transformed into a local coordinate system (x', y'), that defined the normal and

tangential coordinate directions at the delamination tip in the deformed configuration. The mode III

component is identically zero for the plane strain case. Therefore, the total strain energy release rate,

GT, was obtained by summing the individual mode components as

GT = GI + GII . (3)

The data required to perform the VCCT in equations (1) to (3) were accessed directly from

the ABAQUS binary result file to get better accuracy. The calculations were performed in a separate

post processing step using nodal displacements and nodal forces at the local elements in the vicinity

of the delamination front.

Care must be exercised in interpreting the values for GI and GII obtained using the virtual

crack closure technique for interfacial delaminations between two orthotropic solids [14,15]. For the

current investigation, the element length a was chosen to be about 1/4 of the ply thickness, h, for

the delamination in the 90°/45° flange ply interface. Note that for the FE model shown in Figure 4

a/h =0.181 for the element behind and a/h =0.25 for the element in front of the delamination tip.

Therefore, the technique suggested in reference [8] was used to estimate the forces Xi' and Yi' for the



case of unequal element lengths at the delamination tip. For the further delamination growth a value

of a/h =0.25 was used.

ANALYTICAL INVESTIGATION

Superposition Technique for Linear Deformation Behavior

The schematics of the specimen, boundary conditions, and three load cases (tension, bending

and combined tension and bending) considered in this part of the study are shown in Figure 7.

These boundary conditions and loads, however, do not represent the conditions applied during the

experiments as given in Figure 2 of the previous section. This new set of boundary conditions was

chosen to simplify the derivation of the superposition technique for linear deformation behavior. It

was postulated that the specimen exhibits a linear load deflection behavior for the three load cases

shown. Only linear finite element analyses were used. The boundary conditions applied were the

same for all load cases.

For a specimen subjected to a pure tension load P as shown in Figure 7(a), the energy release

rate GP at the delamination tip can be calculated as

GP =
P2

2
⋅
∂CP

∂A
(4)

where CP is the compliance of the specimen and ∂A is the increase in surface area corresponding to

an incremental increase in load or displacement at fracture [16]. For a specimen subjected to a

bending load Q, as shown in Figure 7(b), the energy release rate GQ at the delamination tip can be

calculated accordingly as

GQ =
Q2

2
⋅
∂CQ

∂A
. (5)

If the external load, R, applied in the linear analysis is simply a fraction or multiple of the tension

load P, R = nP, or the bending load Q, R = mQ, the energy release rate GR for the new load case

may be obtained from the known values using

GR = n2GP       or      GR = m2GQ. (6)

In the case of a combined tension/bending load case as shown in Figure 7(c), where the external

load is a combination of a fraction or multiple n of the tension load P and a different fraction or

multiple m of the bending load Q, R = nP + mQ, we obtain



GR =
(nP + mQ)2

2
⋅
∂CR

∂A
=

(n2P2 + 2mnPQ + m2Q2 )

2
⋅
∂CR

∂A
. (7)

Note that for a tension load, P, only, 
∂CR

∂A
=

∂CP

∂A
 and for a bending load, Q, only,

∂CR

∂A
=

∂CQ

∂A
. For

the combined load case equation (7) can then be approximated by

GR ≅
n2P2

2
⋅
∂CP

∂A
+ 2mn

PQ

2

∂CR

∂A
+

m2Q 2

2
⋅
∂CQ

∂A
, (8)

Using equations (4) and (5) yields

  

GR ≅ n2GP + 2mn ⋅
PQ

2
⋅
∂CR

∂A
GPQ

1 2 4 3 4 
+ m 2GQ , (9)

where GPQ is a coupling term which has the dimension of an energy release rate.

First, linear FE analyses of a simple tension and simple bending case are performed using

VCCT to determine GI, GII and GT. This allows calculation of the GP and GQ parameters in equation

(9) for total G, and the GI and GII components. Then a single linear FE analysis of a combined

tension and bending load case is performed using VCCT to obtain the GR parameter in equation (9)

for GI, GII and GT. Once these parameters are determined, then GPQ may be calculated for GI, G II

and GT. The parameters GP, GQ and GPQ may now be used to calculate GR for GI, GII and G T for

other tension and bending load combinations.

Mode I and mode II values were computed using VCCT for a delamination running in the

90°/45° flange ply interface with a length equal to the length of the first element (a/h = 0.181) as

shown in Figure 4. For the pure tension and bending loads shown in Figures 7(a) and (b), energy

release rates were also calculated using the analytical expressions of equation (6). In the example

shown in Figure 8 for the tension load case, the parameter GP in equation (6) was computed for P=

5.5 kN. The total energy release rate GT computed using VCCT and the superposed results are

identical, since equation (6) is an exact closed form solution. Minor differences for the individual

modes, that cannot be explained, are observed. For all permutations of P and Q loads, as shown in

Figure 7(c), energy release rates for the combined load case were calculated using equation (9). In

this investigation the parameter GP in equation (9) was calculated for a tension load P= 5.5 kN, GQ

was determined for a bending load Q= 112.5 kN and GPQ was obtained from one analysis of the

combined tension and bending load. Energy release rates obtained from equation (9) were

compared to mode I and mode II values calculated using VCCT as shown in Figure 9 for the case

where a tension load P= 11.0 kN was applied and Q was varied. For the other permutations of

loads the comparisons of only the total energy release rates, GT, are shown in Figure 10. The good



agreement of results confirms that the superposition technique derived in equation (9) is applicable,

in combination with linear finite element analysis and VCCT to determine the unknown parameters,

provided the structure shows a linear load/deflection behavior.

A Modified Technique for Nonlinear Deformation Behavior

For the investigation of the combined axial tension and bending load case as shown in

Figures 2(c) and 5, nonlinear finite analyses were used since this allowed the axial load to rotate

with the specimen as it deformed under the transverse load and accounted for the membrane

stiffening effect caused by the axial load. In this case the superposition technique derived for the

linear case in the previous section (equations (8) and (9)) is no longer applicable and a modified

method needs to be developed.

An analytical expression was suggested in reference [4] that is primarily a modification of

equation (8) derived in the previous section. The external tension load, P, and bending load, Q, in

the analytical expression were replaced with the local force resultant NXX and moment resultant MXX,

yielding

G = Gmm Mxx
2 +2Gmn Mxx Nxx + Gnn Nxx

2 , (10)

where Gmm and Gnn  are unknown parameters determined from a pure tension and a pure bending

load case and Gmn is an unknown combined tension and bending parameter. The local force and

moment resultants are calculated at the flange tip as shown in Figure 11. For improved accuracy, the

terms related to the transverse shear force resultant, Q xy , were also included in expression (10)

yielding

G = Gmm Mxx
2 +2Gmn Mxx Nxx + Gnn Nxx

2 + 2GmqMxxQxy + 2Gnq NxxQxy +GqqQxy
2 (11)

Equation (11) may be written in matrix from as

G = Mxx
2 2MxxNxx Nxx

2 2MxxQxy 2NxxQxy Qxy
2[ ]⋅

Gmm

Gmn

Gnn

Gmq

Gnq

Gqq

 

 

 
 
 
 
 

 

 

 
 
 
 
 

. (12)

Unlike the linear case where a pure tension or a pure bending load case alone may be used to

determine one of the unknown parameters, nonlinear analysis of the pure tension and pure bending



load case yielded a combination of Mxx  and Nxx  at the flange tip due to the load eccentricity (tension

load) and large displacements (bending load). Therefore, the constants Gij (i,j=m,n,q) could not be

determined simply from the pure tension and bending load cases. Consequently, all six constants

were calculated from a set of six simultaneous linear equations corresponding to six unique loading

combinations solved previously, using nonlinear FE analyses. This yields Gk (k =1,...,6).

G1

G2

G3

G4

G5

G6

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

M1
2 2M1N1 N1

2 2M1Q1 2N1Q1 Q1
2

M2
2 2M2 N2 N2

2 2M2Q2 2M2Q2 Q2
2

M3
2 2M3N3 N3

2 2M3Q3 2M3Q3 Q3
2

M4
2 2M4 N4 N4

2 2M4Q4 2M4Q4 Q4
2

M5
2 2M5N5 N5

2 2M5Q5 2M5Q5 Q5
2

M6
2 2M6 N6 N6

2 2M6Q6 2M6Q6 Q6
2

 

 

 
 
 
 
 

 

 

 
 
 
 
 

⋅

Gmm

Gmn

Gnn

Gmq

Gnq

Gqq

 

 

 
 
 
 
 

 

 

 
 
 
 
 

. (13)

Further, the local force and moment resultants Nxx , Mxx , and Qxy  for all six unique loading

combinations were calculated at the flange tip using the equations shown in Figure 11 by

integrating stresses determined in the nonlinear FE analyses yielding Nk, Mk, and Qk (k =1,...,6).

The system of six equations was then solved for the unknown Gij values. With the constants Gij

known, G could then be calculated from the force and moment resultants Nxx , Qxy  and Mxx  for any

combined tension/bending load case using the technique described by equation (11). The term G is

used here for the total energy release rate or for a mixed mode energy release rate component.

Hence, the calculation of each of the individual modes GI, GII or G T requires a unique set of Gij

constants each. This means that equation (13) needs to be solved individually for each fracture

mode (I,II) before equation (11) is used to obtain the individual modes GI, GII or GT.

The analytical expressions (10) and (11) were derived with the objective of developing a

simple procedure to calculate the strain energy release rate if the specimen shows a nonlinear

load/deflection behavior. The expressions may also be used if the specimen exhibits a linear

load/deflection behavior. Calculating the force and moment resultants and solving equation (13) to

obtain a unique set of constants Gij for each fracture mode, however, appears to be cumbersome in

this case because FE analysis needs to be performed for six unique combined load cases to

determine the unknown parameters Gij. In contrast, the use of expression (8) is simpler, because the

external loads are known and only three load cases need to be analyzed to determine GP, GQ and

GPQ.

The matrix equation (13), which contains the terms of local force and moment resultants Nk,

Mk, and Qk, may become singular. For linear load/deflection behavior this will occur if at least one

of the six load cases selected to calculate Nk, Mk, Qk and Gk is not independent from the other cases,

but simply a linear combination of any of them. For nonlinear load/deflection behavior it is not

easily predictable under which circumstances the matrix might become singular. In both cases,



however, six unique load cases need to be selected to avoid matrix singularity and solve equation

(13) for the unknown parameters.

The energy release rates were calculated using the modified method (equation (11)) for all

permutations of axial loads, P, and transverse displacements, vmax, shown in Figure 5. The unknown

parameters Gij in equation (13) were obtained from nonlinear finite element analyses of six different

unique load cases (P1= 0.0, v1= 30.9 mm; P2= 4.5 kN, v2= 7.5 mm; P3= 4.5 kN, v3= 30.9 mm; P4=

9.0 kN, v4= 7.5 mm; P5= 9.0 kN, v5= 30.9 mm; P6=17.8 kN, v6= 30.9 mm). Calculated mixed-

mode results were compared with the energy release rates obtained directly from nonlinear finite

element analyses using VCCT as shown in Figure 12 for a case where only one axial load of P =

4.5 kN and multiple transverse displacements, vmax, were applied. As expected, the results were

identical for the two cases which had been selected to determine the unknown parameters Gij. For

the other load combinations, GI, GII and GT were in excellent agreement. Total energy release rates

calculated for all axial load and transverse displacement permutations are shown in Figure 13. For

the remaining load combinations, calculated strain energy release rates differed by less than 5%

when compared to results computed directly from nonlinear finite element analysis using VCCT.

Good results, however, were only obtained if the six unique load combinations to determine the

unknown parameters Gij include the upper and lower limits of load combinations as shown in

Figure 13. The modified method should be used to interpolate results for different load

combinations. Extrapolation may lead to inaccurate results.

Hence, it was possible to derive a technique which was applicable for nonlinear deformation

of the specimen. The expression derived for the linear case was modified such that terms of the

external forces were replaced by internal force and moment resultants. The energy release rates

calculated using this technique seemed sufficiently accurate for preliminary design studies.

However, while external forces are known, force and moment resultants at the flange tip need to be

calculated analytically or computed from finite element analysis. For the current study of the

combined axial tension and bending load case, nonlinear finite analyses were used to calculate the

force and moment resultants at the flange tip as shown in Figure 11. This requires about the same

computational effort as directly computing the energy release rates from nonlinear analyses using

the virtual crack closure technique. An additional effort is required to obtain the unknown

parameters Gij. The use of the technique as given in equation (11) may therefore become time

consuming and less appealing for quickly calculating energy release rates for a large number of

new load combinations from a set of known results. Furthermore, this process may have to be

repeated for the simulation of delamination growth where for each new delamination length

modeled mixed mode energy release rates need to be calculated to obtain the distribution of GI, GII

and GT as a function of delamination length. Consequently, another approach was developed for the

simulation of delamination growth.



SIMULATION OF DELAMINATION GROWTH

The techniques developed in the previous sections focused on simple procedures to calculate

the strain energy release rate for various combinations of loads from results previously computed

for other load cases. A related problem is the simulation of delamination growth where mixed mode

energy release rates need to be calculated as a function of delamination length, a. The shape of the

G versus a curves for GI, GII and GT yield information about stability of delamination growth and

often dictate how these energy release rates are used to predict the onset of delamination [17].

During the nonlinear finite element analyses, the delaminations are extended and strain energy

release rates are computed at virtual delamination lengths using the virtual crack closure technique.

For preliminary design studies with several load cases of interest, delamination positions and

lengths need to be checked continuously. Hence, the amount of computation time necessary may

become excessive. Therefore fast and accurate alternatives need to be developed.

Review of Simulated Delamination Propagation Using a Series of Nonlinear FE Analyses

The schematics of the deformed geometries, the boundary conditions, and the loads examined

in this part of the study are shown in Figure 2 for all three load cases. The boundary conditions

considered in the simulations were chosen to model the actual test from references [6, 7] as closely

as possible. For the tension and bending case, the mean loads reported for the point of damage

initiation were applied. At this point, matrix cracks are likely to form. To be consistent with the

combined axial tension and bending tests, a constant axial load, P = 17.8 kN, was applied in a first

load step while transverse loads remained zero. In a second load step, the axial load was kept

constant while the load orientation rotated with the specimen as it deformed under the transverse

load. In the FE simulation, a prescribed displacement was applied which corresponded to the

average of the transverse stroke (v = 31 mm) for which flange debond occurred [6,7].

The initial matrix crack was modeled on one flange tip perpendicular to the flange taper as

suggested by the microscopic investigation and shown in Figure 3. The model of the discrete matrix

crack and delamination is shown in Figure 4. During the nonlinear finite element analyses, the

delaminations were extended and strain energy release rate components were computed as a

function of delamination length using the virtual crack closure technique. The delamination lengths,

a, were measured from the end of the initial matrix crack as shown in Figure 4. The delamination

was extended in twelve increments up to about 0.6 mm (a/h = 3.2) which corresponds to a length

where matrix crack branches were observed in the experiments as shown in Figure 3(b). The

simulated delamination propagation therefore required 12 nonlinear FE analyses for each load case,



consequently 36 analyses for all three load cases. The results plotted in Figures 14 through 16

show that GII increases monotonically for all load cases while GI begins to level off at the longest

delamination lengths [6,7]. These results were intended as reference solutions to be compared with

results from the superposition method in the following section.

A Superposition Technique for Simulated Delamination Growth

In the previous sections, simple quadratic expressions were developed which made it possible

to calculate the strain energy release rate for various load combinations. In this part of the

investigation a technique was developed where the forces and displacements at the crack tip (see

Figure 6) obtained from three linear analyses are superposed. The calculated energy release rates

for one delamination length are matched with the corresponding results from one nonlinear finite

element analysis and a correction factor is determined. This correction factor is then used to size the

results obtained from linear analyses for all other delamination lengths.

Only one nonlinear finite element analysis was performed for each load case using a full

model of the damaged specimen as shown in Figure 4. Loads measured at the onset of damage as

shown in Figure 2 and discussed in the previous paragraph were simulated. Mode I and mode II

energy release rates GI,NL and GII,NL were computed for a delamination length equal to the length of

the first element (a/h =0.181) as shown in Figure 4. Local force and moment resultants Nxx, Qxy ,

and Mxx were calculated at the location where the end of the frame or stringer flange meets the skin

as shown in Figure 11. Resultants plotted in Figure 17 show that the force resultant Nxx  is zero for

the three-point bending test as it is free of axial tension. Also as expected, there is a small transverse

shear, which is non zero. For the tension test, in addition to the membrane resultant, a bending

moment is present due to the load eccentricity in the flange region and the asymmetric layup of the

combined skin and flange laminate with respect to the neutral axis. The shear force resultant Qxy  is

nearly zero, as expected. For the axial tension and bending test, calculated membrane and moment

resultants lie between the computed pure tension and pure bending values [7]. Due to the high

transverse load during the tests, the shear force resultant is significant for this load condition. It was

assumed that these local force and moment resultants calculated at the flange tip vary only slightly

when the delamination is extended.

Three local sub-models (shown in Figure 18) were then developed to simulate delamination

growth using a linear analysis. The local sub-model consisted of a small section of the original

model around the location where the end of the frame or stringer flange meets the skin. To avoid

any disturbance associated with the load introduction, the length of the model to the left of the

damage (d1) was about three times the skin thickness and the length of the model to the right of the



damage location (d2) was about three times the skin plus flange thickness (ts+ tf). The mesh used for

the local sub-model is the same as the mesh of the full model shown in Figure 4. As shown in

Figure 18(a), boundary conditions for all local sub-models were selected to prevent the translations

in the plane and rotation of the model. Three unit load cases were simulated as shown in Figures

18(b) through (d) and the delamination was extended as explained in the paragraph above. External

loads were chosen such that a unit force resultant Nxx, Qxy  or unit moment resultant Mxx exists at the

reference station at the flange tip. For the unit transverse shear load case, a counter reacting moment,

MC, needs to be applied at the end of the model to assure a pure shear force resultant Qxy  at the

flange tip. To facilitate the simulation of the external moment (Figure 18(c) and (d)) three-noded

quadratic beam elements with rotational degrees of freedom were used for the simulation of the load

introduction zone, s, which had the same length as the adjacent plane strain elements (Figure 18(a)).

A rectangular beam cross section was selected to model the square cross section of the skin. The

beams were connected to the two-dimensional plane strain model of the local section using

multi-point constraints to enforce appropriate translations and rotations. This procedure was

explained for the combined axial tension/bending load case and shown earlier in Figure 5. For the

beam model, smeared orthotropic material properties were calculated for the skin laminate and used

as material input data.

For each unit load case (index N,M,Q), the delaminations were extended and a linear finite

element analysis was performed for each length a. For each simulation, forces X'Ni(a), X'Mi(a),

X'Qi(a), and Y'Ni(a), Y'Mi(a), Y'Qi(a), at the delamination tip at node i and the relative displacements

∆u'Nm(a), ∆u'Mm(a), ∆u'Qm(a), and ∆v'Nm(a), ∆v'Mm(a), ∆v'Qm(a), at the corresponding node m behind

the delamination tip were retrieved from the finite element results (see Figure 6). Forces at node j

and relative displacements at node l were also obtained. In a second step, forces and relative

displacements for each of unit load cases were scaled by multiplying with the corresponding force

and moment resultant Nxx, Qxy  and Mxx obtained from the nonlinear analysis of the full model. The

scaled forces and displacements were then superposed yielding

    

Y' i a( ) = Nxx ⋅ Y'Ni a( ) + Mxx ⋅Y' Mi a( ) + Qxz ⋅ Y'Qi a( )
Y' j a( ) = Nxx ⋅ Y'Nj a( ) + Mxx ⋅Y' Mj a( ) + Qxz ⋅ Y'Qj a( )
∆v'm a( ) = Nxx ⋅∆v'Nm a( ) + Mxx ⋅∆v'Mm a( ) + Qxz ⋅∆v' Qm a( )
∆v'l a( ) = Nxx ⋅∆ v'Nl a( ) + Mxx ⋅∆v'Ml a( ) + Qxz ⋅∆v'Ql a( )

(14)



Forces X'i(a) and X'j(a) as well as relative displacements ∆u'm(a) and ∆u 'l(a), were obtained

accordingly. All forces (X'i(a), X'j(a), and Y'i(a), Y'j(a)), and relative displacements (∆u'm(a),  ∆u'l(a),

and ∆v'm(a), ∆v'l(a)) obtained, served as input for the virtual crack closure technique

    

GI a( ) = −
cI

2∆a
⋅ Y'i a( ) ⋅ v'm a( ) − v'm* a( )( )

∆v'
m

a( )
1 2 4 4 4 3 4 4 4 

+ Y' j a( ) ⋅ v'l a( ) − v'l * a( )( )
∆v'l a( )

1 2 4 4 3 4 4 

 

 

 
 
 

 

 

 
 
 

(15)

    

GII a( ) = −
cII

2∆a
X'i a( ) ⋅ u'm a( ) − u'm* a( )( )

∆u'
m

a( )
1 2 4 4 4 3 4 4 4 

+ X' j a( )⋅ u'l a( ) − u'l * a( )( )
∆u'l a( )

1 2 4 4 3 4 4 

 

 

 
 
 

 

 

 
 
 

. (16)

The correction factors cI and cII for mode I and mode II, respectively, were introduced in order to

size the results for GI and GII obtained from the superposition procedure (equations (15) and (16))

along the delamination length. One set of correction factors cI and cII was determined for the entire

study by matching the GI and GII results obtained for the initial crack (a/h =0.181) with GI,NL and

GII,NL computed from the initial nonlinear analysis. This is accomplished by calculating GI

(a/h =0.181) and GII (a/h =0.181) first with the correction factors set to cI=cII=1 and then solving

for the correction factors

cI =
GI,NL a/h = 0.181( )
GI a/h = 0.181( )    and   cII =

GII,NL a/h = 0.181( )
GII a/h = 0.181( ) .  (17)

The correction factors obtained for the tension, three-point bending and combined axial

tension/bending load case are given in Table 2. For the pure tension and the axial tension/bending

load cases the correction factors are relatively large when compared to the factors calculated for the

pure bending load case. This is most likely related to the distinct nonlinear load/deflection behavior

of the specimens subjected to these loadings. Hence, large correction factors are required to match

the results obtained from the three linear unit load cases with those obtained directly from nonlinear

FE analysis using VCCT. Consequently, for a nearly linear load/deflection behavior - as observed

during the bending test - a much smaller correction factor is required. The load/deformation

behavior of the specimens for all three load cases is discussed in detail in references [6, 7].

For the tension, three-point bending and combined axial tension and bending load case,

mixed mode energy release rates were calculated using the superposition technique described above

and given in equations (14) through (17). The results were included in the plots of Figures 14

through 16. For the initial matrix crack length (a/h =0.181) the results are identical, as this point



was chosen to match the results and calculate the corrections factors (see equation (17)). The

correction factors obtained were kept constant during the simulation of delamination growth. The

obtained mixed mode energy release rates show that GII increases monotonically for all load cases

while GI begins to level off at the longest delamination lengths. For the bending load case the

results were in excellent agreement with energy release rates calculated directly from nonlinear finite

element results using VCCT along the entire delamination length. This may be attributed to the fact

that the load/deflection behavior of the specimen under this load is nearly linear and therefore can

closely be approximated by the linear analyses of the local sub-models. Along the entire

delamination length investigated, results were in good agreement for the other load cases as well. As

the delamination length becomes longer however, the results obtained from the superposition

technique begin to deviate slightly from the values calculated directly from nonlinear finite element

analyses. For long delamination lengths it might therefore be advantageous to calculate several

reference solutions for different delamination lengths from the full model using nonlinear analyses

and updating the correction factors.

As mentioned in the previous paragraph, a total of twelve nonlinear analyses were necessary

when using the conventional approach to obtain the results for one load case as shown in Figures

14 through 16. The superposition technique described above required only one nonlinear analysis

of the full model for each load case and 36 linear analyses of the local sub-model. Even for one

load case this means a considerable reduction in CPU time. Although additional modeling effort is

required to create the local sub-model, the results indicate that the proposed technique is very

efficient for large parametric studies which may occur during preliminary design where multiple

load combinations must be considered.

 CONCLUDING REMARKS

Three simple procedures were developed to determine strain energy release rates, G, in

composite skin/stringer specimens for various combinations of in-plane and out-of-plane loading

conditions. These procedures may be used for parametric design studies in such a way that only a

few finite element computations will be necessary for a study of many load combinations. Since

energy is a quadratic function of the applied loads, it was not possible to simply superpose and add

the energy release rates from separate load cases. A simple quadratic expression was previously

developed to calculate the strain energy release rate for any combination of loads. To validate the

procedures, results obtained from the quadratic expressions were compared to mode I and mode II

strain energy release rate contributions, which were calculated from nonlinear two-dimensional

plane-strain finite element analyses using the virtual crack closure technique.



For the first technique, the boundary conditions for the tension, bending and combined

tension/bending load case were chosen in such a manner that the specimen deformation was

assumed to be a linear function of the applied loads. Therefore a linear finite element solution was

used to compute the strain energy release rate for various multi-axial load combinations. The

technique involved solving three unknown parameters needed to determine the energy release rates

from a simple tension, a simple bending, and one combined tension/bending load case. Excellent

results were obtained when the external loads were used. This superposition technique, however,

was only applicable if the structure exhibits a linear load/deflection behavior.

Consequently, a second modified technique was derived which was applicable also in the case

of nonlinear load/deformation behavior. The expression derived for the linear case was modified

such that terms of the external forces were replaced by internal force and moment resultants at the

flange tip. The energy release rates calculated using this technique seemed sufficiently accurate for

preliminary design studies. However, force and moment resultants at the flange tip need to be

calculated and additional effort is required to obtain six unknown parameters from a set of six

simultaneous linear equations to determine the energy release rates. This procedure, therefore, was

not time efficient, and hence, less appealing.

Finally, a third procedure was developed to calculate mixed mode energy release as a function

of delamination lengths. This procedure required only one nonlinear finite element analysis of the

specimen with a single delamination length to obtain the force and moment resultants at the flange

tip and a reference solution for the energy release rates. It was assumed that the local force and

moment resultants calculated at the flange tip vary only slightly when the delamination is extended.

Therefore it is sufficient to calculate these resultants for one delamination length. The delamination

was subsequently extended in three separate linear models of the local area in the vicinity of the

delamination subjected to unit loads. Forces and displacements computed at the delamination tip for

the unit load cases were superposed and used in the virtual crack closure technique to obtain the

distribution of G with delamination length. Results were in good agreement with energy release

rates calculated directly from nonlinear finite element results using VCCT. Although additional

modeling effort is required to create the local sub-model, this superposition technique is very

efficient for large parametric studies which may occur during preliminary design where multiple

load combinations must be considered.
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TABLES

TABLE 1. MATERIAL PROPERTIES.

IM6/3501-6 Unidirectional Graphite/Epoxy Tape [2]

E11  = 144.7 GPa E22  = 9.65 GPa E33  = 9.65 GPa

12  = 0.30 13  = 0.30 23  = 0.45

G12  = 5.2 GPa G13  = 5.2 GPa G23  = 3.4 GPa

CYTEC 1515 Adhesive
E = 1.72 GPa  = 0.30 (assumed isotropic)

TABLE 2. CORRECTION FACTORS FOR SCALED ENERGY RELEASE RATES.

Tension Load Case Bending Load Case Axial Tension/Bending
Load Case

cI =1.2657 cI =1.0036 cI =1.2791
cII =1.2484 cII =1.0646 cII =1.1720



Figure 1. Specimen Configuration.

203.2 mm

25.4 mm

27°

Flange tip

Flange SkinSkin

tf = 1.98 mm
ts = 2.63 mm

50.0 mm

42.0 mm

0°



(a) Tension Specimen

(b) Bending Specimen

(c) Combined Axial Tension/Bending Specimen
Scale Different from (a) and (b)

x,u,P

y,v,Q

x,u,P

y,v,Q

P

v
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and Boundary Conditions at Damage Initiation [6,7].

x,u,P

y,v,Q

undeformed center line
deformed configuration

127.0 mm

127.0 mm

u=v=0 at x=0 P=20.9 kN

Q= 428 N

v=0u=v=0

Step 1: v=0
            P=17.8 kN
Step 2: v=31.0 mm
            P=17.8 kN

101.6 mm 167.6 mm

top grip, axial load cell and pin



Adhesive Bondline

Matrix Crack Branches

Initial Matrix Crack

45
90

-45
0

0
45
90

-45

Adhesive Pocket

Delamination A

Figure 3. Typical Damage Patterns [6,7]

(b) Corners 1 and 4

(c) Corners 2 and 3

Corner 3 Corner 1

Corner 4 Corner 2

(a) Specimen with Crack Locations.

Initial Matrix Crack

45
90

-45
0

0
45
90

-45

Delamination B2Delamination B1

Adhesive Bondline



Figure 4. Finite Element Model of a Damaged Specimen.

Detail

Detail

y,v,Q

x,u,P

y,v,Q

x,u,P

adhesive film

45° ply
h=0.188 mm

90° ply
h=0.188 mm

-45° ply

a, delamination length (delamination A)

∆a/h=0.181

matrix crack



top grip, axial load cell and pin modeled
with beam elements (E=210 GPa, =0.3)

specimen modeled with
2D plane strain elements

u=v=0 at x=0

P

v

Detail

x,u,P

y,v,Q

φ

101.6 mm

Step 1: v=0
            P=Pmax

Step 2: v=vmax

            P=Pmax

167.6 mm
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Figure 6. Virtual Crack Closure Technique (VCCT).

GI = -[ Y'i ( v'm - v'm* ) + Y'j ( v'  - v' * ) ] / ( 2∆a )
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Figure 7. Loads and Boundary Conditions For Tension and Three-
Point Bending and Combined Loading Case.
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Figure 11. Calculation of Force and Moment Resultants
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Figure 14. Computed Strain Energy Release Rates for Delamination Growth
in a 90°/45° Flange Ply Interface for Tension Load Case.
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Figure 15. Computed Strain Energy Release Rates for Delamination Growth
in a 90°/45° Flange Ply Interface for Three-Point Bending Load Case.

Delamination Length a, mm

G, 

J/m2

Q=428 N
a/h=0.25



0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5 0.6

C20 ATB data 4:01:45 PM 2/1/99

G
T
   [6,7]

G
I
    [6,7]

G
II
   [6,7]

G
T
 (superposition)

G
I
 (superposition)

G
II
 (superposition)

Delamination Length a, mm

Figure 16. Computed Strain Energy Release Rates for Delamination Growth in 
a 90°/45° Flange Ply Interface for Combined Tension and Bending Load Case.
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Figure 17. Computed Force and Moment Resultants at Flange Tip.
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Figure 18. Local finite element model for linear analyses and unit loads.
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